skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Plummer, Abigail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When swelling hydrogels encounter obstacles, they either expand around the obstacles or fracture, depending on obstacle geometry. 
    more » « less
  2. Conical surfaces pose an interesting challenge to crystal growth: A crystal growing on a cone can wrap around and meet itself at different radii. We use a disk-packing algorithm to investigate how this closure constraint can geometrically frustrate the growth of single crystals on cones with small opening angles. By varying the crystal seed orientation and cone angle, we find that—except at special commensurate cone angles—crystals typically form a seam that runs along the axial direction of the cone, while near the tip, a disordered particle packing forms. We show that the onset of disorder results from a finite-size effect that depends strongly on the circumference and not on the seed orientation or cone angle. This finite-size effect occurs also on cylinders, and we present evidence that on both cylinders and cones, the defect density increases exponentially as circumference decreases. We introduce a simple model for particle attachment at the seam that explains the dependence on the circumference. Our findings suggest that the growth of single crystals can become frustrated even very far from the tip when the cone has a small opening angle. These results may provide insights into the observed geometry of conical crystals in biological and materials applications. 
    more » « less